LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034 Sc., B.COM DEGREE EXAMINATION – MATHS, PHYSICS & COMMERCE THIRD SEMESTER – NOVEMBER 2013 ST 3205/3202 - ADVANCED STATISTICAL METHODS Date : 13/11/2013 Time : 9:00 - 12:00 Dept. No. Max. : 100 Marks

Answer all the questions

- 1. Write down the class frequencies of all orders in case of 3 attributes A,B and C.
- 2. Provide the conditions for consistency of data involving three attributes.
- 3. Check whether A and B are independent for the following data:

(AB) =256, $(\alpha B) = 768$, $(A\beta) = 48$ and $(\alpha\beta) = 144$

- 4. Define Yule's coefficient of association and coefficient of colligation.
- 5. If (AB) = 2340, (A β) = 230, (α B) = 260 and ($\alpha\beta$) =2340 find the other class frequencies.
- 6. Write the sample space for the experiment of tossing three fair coins.
- 7. Define normal distribution.
- 8. If X has the probability mass function $f(x) = q^x p$, x=0,1,2..., $0 \le p \le 1$; f(x) = 0, otherwise Compute E(X).
- 9. Write any two uses of chi-square statistic.

Answer any five questions

10. Write a note on mean and range control charts.

PART – B

5 x 8 = 40 Marks

 $10 \ge 2 = 20$ Marks

- 11. Show that for n attributes A_1 , A_2 , ... A_n $(A_1 A_2 ... A_n) \ge (A_1) + (A_2) + ... + (A_n) - (n-1) N$, where N is the total number of observations.
- 12. If $\delta = (AB) (AB)_0$ then with usual notations prove that [(A) - (α)] [(B) - (β)] +2N $\delta = (AB)^2 + (\alpha\beta)^2 - (A\beta)^2 - (\alpha B)^2$.
- 13. State and prove Boole's inequality.
- 14. (a) If A_1 , A_2 , ..., A_n are independent events with $P(A_i) = 1 (1/\alpha^1)$, i=1,2,...,n, find the value of $P(A_1 \cup A_2 \cup A_3 \cup ... \cup A_n)$.
 - (b) Suppose the events A_1, A_2, \ldots, A_n are independent and that $P(A_i) = 1/(i+1)$ for $1 \le i \le n$ find the Probability that none of the n events occurs. (4+4)

...2

-2-

15. A random variable X has the following probability distribution : X=x: 08 2 4 5 1 3 6 7 3k 5k 7k 9k 11k 13k 15k 17k P(x) : k

- (i) Determine the value of k.
- (ii) Find $P(X \le 3)$, $P(X \ge 3)$ and $P(0 \le X \le 5)$.
- 16. If X has the probability mass function
 - $P(x) = e^{-\lambda} \lambda^{x}/x!$, x = 0,1,2..., $\lambda > 0$, find mean and variance of X.
- 17. Ten individuals were chosen at random from a normal population and their heights were found to be 63,63,66,67,68,69,70,71,71 inches. Test if the sample belongs to the population whose mean height is 66". Use 5% level of significance.
- 18. The following data give the number of defectives in 10 independent samples of varying sizes from a production process:

Sample No.	:	1	2	3	4	5	6	7	8	9	10
Sample size	:	2000	1500	1400	1350	1250	1760	1875	1955	3125	1575
No. of defecti	ves:	425	430	216	341	225	322	280	306	337	305
Draw the cont	trol ch	art for fi	action d	efective	e and co	mment	on it.				

PART - C

2 x 20 = 40 marks

(15+5)

- 19. (a) Find the remaining class frequencies given the following data: N= 23713 ,(A) = 1618 , (B) =2015 ,(C) = 770 , (AB) =587 , (AC) =428 , (BC) = 335 and (ABC) =156.
 - (b) If Q and Y denote the Yule's coefficient of association and coefficient of colligation respectively, Show that $Q = 2Y/(1+Y^2)$.
- 20 (a) State and prove Bayes' theorem.

Answer any two questions

- (b) Three urns I,II and III contain marbles as follows:
 - 4 white, 5 black and 3 red marbles
 - 2 white, 1 black and 1 red marbles
 - 1 white, 2 black and 3 red marbles.

One urn was chosen at random and two marbles were drawn from it. They were found to be white and red . What is the probability that they have come from urn I, urn II or urn III ?

- (c) If $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3}$ and $P(A \cap B) = \frac{1}{8}$, find (i) $P(A \mid B)$ (ii) $P(B \mid A)$ (iii) $P(A^c \mid B)$ (iv) $P(A \mid B^c)$ (v) $P(A^c \mid B^c)$ (vi) $P(B^c \mid A)$ (vii) $P(B \mid A^c)$ (4+9+7)
- ...3

-3-

- 21 (a) The mean yield for one acre plot is 662 kgs with a standard deviation of 32 kgs.
 Assuming normal distribution how many one-acre plots in a batch of 1200 plots would you expect to have yield (i) over 700 kgs (ii) below 650 kgs (iii) what is the lowest yield of the best 100 plots ?
 - (b) Fit a Poisson distribution to the following data which gives the number of doddens in a sample of Clover seeds:

No. of doddens : 0	1	2	3	4	5	6	7	8
Observed frequency : 56	156	132	92	37	22	4	0	1
Also test the goodness of fit at 5% level of significance.								

22 (a) In a large city A, 20 percent of a random sample of 900 school children had defective

eye-sight. In another large city B, 15 percent of a random sample of 1600 children had the same defect. Is this difference between the two proportions significant? Use 1% level of significance.

(b) Four experimenters determine the moisture content of samples of powder, each man taking a sample from each of six consignments. The assessments are :

Observer	Consignment									
	1	2	3	4	5	6				
1	9	10	9	10	11	11				
2	12	11	9	11	10	10				
3	11	10	10	12	11	10				
4	12	13	11	14	12	10				

Carry out the ANOVA and discuss whether there is any significant difference between consignments and between observers. Use 5% significance level.

(5 + 15)