LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.COM DEGREE EXAMINATION - MATHS, PHYSICS \& COMMERCE THIRD SEMESTER - NOVEMBER 2013

ST 3205/3202-ADVANCED STATISTICAL METHODS

Date: 13/11/2013
Dept. No. \square Max. : 100 Marks
Time : 9:00-12:00

PART - A

Answer all the questions

$10 \times 2=20$ Marks

1. Write down the class frequencies of all orders in case of 3 attributes A, B and C.
2. Provide the conditions for consistency of data involving three attributes.
3. Check whether A and B are independent for the following data:
$(A B)=256,(\alpha B)=768,(A \beta)=48$ and $(\alpha \beta)=144$
4. Define Yule's coefficient of association and coefficient of colligation.
5. If $(\mathrm{AB})=2340,(\mathrm{~A} \beta)=230,(\alpha \mathrm{~B})=260$ and $(\alpha \beta)=2340$ find the other class frequencies.
6. Write the sample space for the experiment of tossing three fair coins.
7. Define normal distribution.
8. If X has the probability mass function
$f(x)=q^{x} p \quad, x=0,1,2 \ldots, 0<p \leq 1 ; f(x)=0$, otherwise
Compute $\mathrm{E}(\mathrm{X})$.
9. Write any two uses of chi-square statistic.
10. Write a note on mean and range control charts.

PART - B

Answer any five questions

$5 \times 8=40$ Marks
11. Show that for n attributes $A_{1}, A_{2}, \ldots A_{n}$
$\left(\mathrm{A}_{1} \mathrm{~A}_{2} \ldots \mathrm{~A}_{\mathrm{n}}\right) \geq\left(\mathrm{A}_{1}\right)+\left(\mathrm{A}_{2}\right)+\ldots+\left(\mathrm{A}_{\mathrm{n}}\right)-(\mathrm{n}-1) \mathrm{N}$, where N is the total number of observations.
12. If $\delta=(\mathrm{AB})-(\mathrm{AB})_{0}$ then with usual notations prove that $[(A)-(\alpha)][(B)-(\beta)]+2 N \delta=(A B)^{2}+(\alpha \beta)^{2}-(A \beta)^{2}-(\alpha B)^{2}$.
13. State and prove Boole's inequality.
14. (a) If $A_{1}, A_{2}, \ldots A_{n}$ are independent events with $P\left(A_{i}\right)=1-\left(1 / \alpha^{i}\right), i=1,2, \ldots n$, find the value of $\mathrm{P}\left(\mathrm{A}_{1} \cup \mathrm{~A}_{2} \cup \mathrm{~A}_{3} \cup \ldots \cup \mathrm{~A}_{\mathrm{n}}\right)$.
(b) Suppose the events $A_{1}, A_{2}, \ldots \quad A_{n}$ are independent and that $P\left(A_{i}\right)=1 /(i+1)$ for $1 \leq i \leq n$ find the Probability that none of the n events occurs.
15. A random variable X has the following probability distribution :

$\mathrm{X}=\mathrm{x}:$	0	1	2	3	4	5	6	7
$\mathrm{P}(\mathrm{x}): \mathrm{k}$	3 k	5 k	7 k	9 k	11 k	13 k	15 k	17 k

(i) Determine the value of k .
(ii) Find $\mathrm{P}(\mathrm{X}<3), \mathrm{P}(\mathrm{X} \geq 3)$ and $\mathrm{P}(0<\mathrm{X}<5)$.
16. If X has the probability mass function
$\mathrm{P}(\mathrm{x})=\mathrm{e}^{-\lambda} \lambda^{x} / \mathrm{x}!, \mathrm{x}=0,1,2 \ldots, \quad \lambda>0 \quad$, find mean and variance of X .
17. Ten individuals were chosen at random from a normal population and their heights were found to be $63,63,66,67,68,69,70,71,71$ inches. Test if the sample belongs to the population whose mean height is $66^{\prime \prime}$. Use 5% level of significance.
18. The following data give the number of defectives in 10 independent samples of varying sizes from a production process:

Sample No. $:$	1	2	3	4	5	6	7	8	9	10	
Sample size	$:$	2000	1500	1400	1350	1250	1760	1875	1955	3125	1575
No. of defectives:	425	430	216	341	225	322	280	306	337	305	

Draw the control chart for fraction defective and comment on it.

PART - C

Answer any two questions

$2 \times 20=40$ marks
19. (a) Find the remaining class frequencies given the following data:
$\mathrm{N}=23713,(\mathrm{~A})=1618,(\mathrm{~B})=2015,(\mathrm{C})=770,(\mathrm{AB})=587,(\mathrm{AC})=428,(\mathrm{BC})=335$ and $(\mathrm{ABC})=156$.
(b) If Q and Y denote the Yule's coefficient of association and coefficient of colligation respectively,
Show that $\mathrm{Q}=2 \mathrm{Y} /\left(1+\mathrm{Y}^{2}\right)$.
20 (a) State and prove Bayes' theorem.
(b) Three urns I, II and III contain marbles as follows:

4 white, 5 black and 3 red marbles
2 white, 1 black and 1 red marbles 1 white, 2 black and 3 red marbles.
One urn was chosen at random and two marbles were drawn from it. They were found to be white and red. What is the probability that they have come from urn I, urn II or urn III ?
(c) If $\mathrm{P}(\mathrm{A})=1 / 2, \mathrm{P}(\mathrm{B})=1 / 3$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=1 / 8$, find (i) $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ (ii) $\mathrm{P}(\mathrm{B} \mid \mathrm{A})$ (iii) $\mathrm{P}\left(\mathrm{A}^{\mathrm{c}} \mid \mathrm{B}\right)$ (iv) $\mathrm{P}\left(\mathrm{A} \mid \mathrm{B}^{\mathrm{c}}\right)$ (v) $\mathrm{P}\left(\mathrm{A}^{\mathrm{c}} \mid \mathrm{B}^{\mathrm{c}}\right)$ (vi) $\mathrm{P}\left(\mathrm{B}^{\mathrm{c}} \mid \mathrm{A}\right)$ (vii) $\mathrm{P}\left(\mathrm{B} \mid \mathrm{A}^{\mathrm{c}}\right)$

21 (a) The mean yield for one acre plot is 662 kgs with a standard deviation of 32 kgs . Assuming normal distribution how many one-acre plots in a batch of 1200 plots would you expect to have yield (i) over 700 kgs (ii) below 650 kgs (iii) what is the lowest yield of the best 100 plots?
(b) Fit a Poisson distribution to the following data which gives the number of doddens in a sample of Clover seeds:

No. of doddens	$:$	0	1	2	3	4	5	6	7
Observed frequency : 56	156	132	92	37	22	4	0	1	

Also test the goodness of fit at 5% level of significance. $\quad(7+13)$
22 (a) In a large city A, 20 percent of a random sample of 900 school children had defective
eye-sight. In another large city B, 15 percent of a random sample of 1600 children had the same defect. Is this difference between the two proportions significant? Use 1% level of significance.
(b) Four experimenters determine the moisture content of samples of powder, each man taking a sample from each of six consignments. The assessments are :

Observer	Consignment					
	1	2	3	4	5	6
1	9	10	9	10	11	11
2	12	11	9	11	10	10
3	11	10	10	12	11	10
4	12	13	11	14	12	10

Carry out the ANOVA and discuss whether there is any significant difference between consignments and between observers. Use 5\% significance level.

$$
(5+15)
$$

